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1. INTRODUCTION
1.1 PURPOSE OF REPORT AND LIMITATIONS

The purpose of this report is to present analogue studies and literature reviews designed to
provide qualitative and quantitative information to test and provide added confidence in process
models abstracted for performance assessment (PA) and model predictions pertinent to PA. This
report provides updates to studies presented in the Yucca Mountain Site Description (CRWMS
M&O 2000 [151945], Section 13) and new examples gleaned from the literature, along with
results of quantitative studies conducted specifically for the Yucca Mountain Site
Characterization Project (YMP). The intent of the natural analogue studies was to collect
corroborative evidence from analogues to demonstrate additional understanding of processes
expected to occur during postclosure at a potential Yucca Mountain repository. The report
focuses on key processes by providing observations and analyses of natural and anthropogenic
(human-induced) systems to improve understanding and confidence in the operation of these
processes under conditions similar to those that could occur in a nuclear waste repository. The
process models include those that represent both engineered and natural barrier processes. A
second purpose of this report is to document the various applications of natural analogues to
geologic repository programs, focusing primarily on the way analogues have been used by the
YMP. This report is limited to providing support for PA in a confirmatory manner and to
providing corroborative inputs for process modeling activities. Section 1.7 discusses additional
limitations of this report.

Key topics for this report are analogues to emplacement drift degradation, waste form
degradation, waste package degradation, degradation of other materials proposed for the
engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone
(UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated zone
(SZ) transport, impact of radionuclide release on the biosphere, and potentially disruptive events.
Results of these studies will be used to corroborate estimates of the magnitude and limitation of
operative processes in order to build realism into conceptual and numerical process models used
as a foundation for PA in the representative case of postclosure safety.

1.2 DEFINITION OF ANALOGUE

Natural analogues refer to either natural or anthropogenic systems in which processes similar to
those expected to occur in a nuclear waste repository are thought to have occurred over long time
periods (decades to millenia) and large spatial scales (up to tens of kilometers). Analogues
provide an important temporal and spatial dimension to the understanding of processes not
accessible to laboratory experiments that may take place in a nuclear waste repository and
surrounding area. The use of analogy has been endorsed by the international nuclear waste
community as a means of demonstrating confidence in the operation of systems, components,
and processes related to nuclear waste disposal (e.g., publications of the International Atomic
Energy Agency [IAEA] and the European Community’s Natural Analogue Working Group).
“The role of a natural analogue should ... be to confirm: (a) that the process is in fact something
which can or will occur in practice as well as in theory, and in nature as well as in the laboratory;
(b) where, when, and under what conditions it can occur; (c) that the effects of the process are
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those envisaged in the model; and (d) that the magnitude of the effects in terms of scale and time
are similar to those predicted for a similar set of conditions” (Chapman and Smellie 1986
[124323], p. 167).

1.3 ROLE OF NATURAL ANALOGUES IN PROCESS MODELS AND
PERFORMANCE ASSESSMENT

Natural analogues may be applied in a quantitative or a qualitative manner, depending upon the
purpose to which they are applied and upon the specific analogue. They can provide descriptive
information about the occurrence of various processes, or they may be able to constrain the
bounds of those processes. Natural analogues allow testing of the pertinence of individual
processes over geologic time and space scales, assessing the relative importance of various
processes, and gauging the effects of process coupling. For some processes (e.g., those that are
thermally coupled), natural analogues may be the only means of providing the required
understanding of long-term and large-scale behavior needed to provide scientific confidence in
process models for input to total system performance assessment (TSPA). Analogue
investigations may determine the conditions under which the processes occur, the effects of the
processes, and the magnitude and duration of the processes.

Analogue information may also provide a body of data for testing codes and for validation of
conceptual and numerical models. Natural analogue information may also be used to build
confidence in databases themselves. Because natural analogues can be used to evaluate the
validity of extrapolating from temporally limited field-scale experiments to longer time scales, or
to add confidence when extrapolating from laboratory and intermediate-scale experiments to
tests at larger spatial scales, they are uniquely suited to building confidence in process models. In
this manner, they are used as a means of model validation, or confidence-building. Each of the
Process Model Reports (PMRs) that support Site Recommendation (SR) includes a section on
“validation” that in many cases utilizes natural analogue information.

Less commonly, natural analogues may be used to assist and support the selection of scenarios
and to establish the probability of occurrence of selected scenarios. Natural analogues do not
reduce uncertainty per se; that is, the uncertainty bounds on a given parameter value may remain
unchanged. However, natural analogues can build confidence that the bounds are set
appropriately. Because some uncertainties are greater in natural analogues than at the site being
characterized, information from natural analogues should only be used in conjunction with other
information to evaluate consistency with laboratory and field data.

Comparison of model predictions with the results of natural analogue investigations will in
general only permit confirmation that the model takes into account the relevant processes in
appropriate ways. Validation of a predictive model by such comparison provides reasonable
assurance that the model reflects future behavior. This is the level of confidence required by 66
FR ([156671], p. 55804), which states, in §63.101(a): “Demonstrating compliance will involve
the use of complex predictive models that are supported by limited data from field and laboratory
tests, site-specific monitoring, and natural analogue studies that may be supplemented by
prevalent expert judgment.”
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1.4 ROLE OF NATURAL ANALOGUES IN LICENSE APPLICATION

The National Research Council endorsed the use of natural analogues as “natural test cases,
geological settings in which naturally occurring radioactive materials have been subjected to
environmental forces for millions of years” (National Research Council 1990 [100061], p. 27).
The Council’s report indicates that natural analogues are essential for validating performance
assessment models of geologic repositories over thousands or millions of years, as well as
forming the basis for communicating the safety of a deep geologic repository in terms the public
can understand. The Nuclear Waste Technical Review Board concurred in these
recommendations (NWTRB 1990 [126162], p. xiii).

In 66 FR ([156671], p. 55804, Section 63.101(a)(2)), the Nuclear Regulatory Commission
(NRC) has identified natural analogues as one way of demonstrating compliance with the
reasonable expectation that postclosure performance objectives will be met. As summarized in

Section 1 of this report, the NRC also specifies natural analogues as one method to provide the
technical basis for models in (66 FR [156671], p. 55804).

The content requirements for the license application (66 FR [156671], p. 55798, Section
63.21(c)(15)) specify natural analogue studies as one of the measures used to support analyses
and models that are used to assess performance of a geologic repository. In addition, the
technical criteria for a license application (66 FR [156671], p. 55804) specify the use of natural
analogue information as part of the demonstration of compliance with the performance
objectives of the disposal regulations. Further, the demonstration of the concept of multiple
barriers and the performance of complex engineered structures must include information from
natural and archaeologic analogs (66 FR [156671], p. 55805, Section 63.102(h)). The importance
of natural analogs in supporting performance assessment models is again included in the
requirements for performance assessment (66 FR [156671], p. 55807, Section 63.114(g)).

Ten agreements from the DOE-NRC technical exchanges and management meetings on key
technical issues (KTIs) include mention of analogues or information from analogue studies as
necessary to address the agreement item. As shown in Table 1-1, two KTI agreement items are at
least partially addressed by information in this report. A cross reference to this table is found in
the sections of this report that could provide information related to these KTIs.

1.5 CRITERIA FOR SELECTION OF ANALOGUES USED IN MODEL
VALIDATION

As pointed out by Pearcy and Murphy (1991 [157563]), the 10,000-year period required for
high-level waste isolation is a difficult period to approximate with natural analogues. For
instance, most ore deposits are on the order of a million to a billion years in age, whereas
anthropogenic sites (i.e., human made) are generally on the order of a few thousand years or less.
To be most helpful in terms of long-term processes relevant to a high-level waste repository, it
would be useful to find analogues with ages on the order of 1,000 to 1 million years.

Because no single site will be a perfect analogue to all ongoing and anticipated processes at

Yucca Mountain, focus is placed on identifying sites having analogous processes rather than total
system analogues. Nevertheless,.it is still worthwhile to attempt to match as many features and
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characteristics as possible when identifying suitable analogue sites. An ideal analogue site to
long-term radionuclide transport at Yucca Mountain would have to satisfy the following
conditions: (1) a known source term, (2) a similar set of radionuclides, (3) well-characterized
with site data, (4) similar geologic conditions, (5) observable long-term conditions, (6)
identifiable boundaries of the system, and (7) a clear-cut process that can be decoupled from
other processes. It is most useful if the analogue has been in place for at least thousands of years,
so that the results of long-term behavior are observable.

In addition to using natural analogues for long-term predictions, models must be able to explain
and match the transport times and pathways from contaminated sites that provide anthropogenic
analogues, such as Hanford, Washington; the Idaho National Engineering and Environmental
Laboratory (INEEL); and the Nevada Test Site (NTS). Anthropogenic analogue sites are a
challenge to constrain in models, because they often contain more than one contaminated source,
(sometimes with poorly identified source terms), have a complex mixture of radionuclides and
other contaminants, and often occur in highly heterogeneneous formations.

With respect to choosing different geochemical transport analogues, Chapman and Smellie (1986
[124323], p. 168) state the following:

The essentials to bear in mind when selecting analogues are as follows: (1) The
process involved should be clear-cut. Other processes which may have been
involved in the geochemical system should be identifiable and amenable to
quantitative assessment as well, so that their effects can be accountable. (2) The
chemical analogy should be good. It is not always possible to study the behavior
of a mineral system, chemical element or isotope identical to that whose
behaviour requires assessing. The limitations of this should be fully understood.
(3) The magnitude of the various physicochemical parameters involved (P, T, Eh,
concentration, etc.) should be determinable, preferably by independent means. (4)
The boundaries of the system should be identifiable (whether it is open or closed,
and consequently how much material has been involved in the process being
studied). (5) The time-scale of the process must be measurable, since this factor is
of the greatest signficance for a natural analogue.

Care must be taken in selection of an appropriate analogue to represent correctly the process of
interest. For example, all uranium deposits are not categorically good analogues for stability of a
nuclear waste repository. Uranium deposits indicate the long-term stability of some geologic
environments, but some of the same ore deposits could be used to make arguments for massive
transport of radioactive materials over large distances by natural processes. Care must also be
exercised to exclude those analogues for which initial and/or boundary conditions are poorly
known and where important data, such as the source term, are poorly constrained and may not be
obtainable. A given site will usually only be analogous to some portion of a repository or to a
subset of processes that will occur in a repository. Furthermore, additional processes will have
occurred that are not characteristic of the repository. Therefore, choices must be made to select
the processes of greatest relevance and the ability to isolate them for study. The long-term nature
of analogues introduces some limitations and uncertainties, but analogues can still be used
effectively if appropriate selection criteria are determined and applied.

TDR-NBS-GS-000027 REV 00 ICN 01 1-4 ' April 2002 |



Natural Analogue Synthesis Report

In the early 1990s, the U.S. Department of Energy (DOE)YMP convened a panel of
international experts in natural analogues to provide guidance in selection and use of natural
analogues for implementation by the YMP. The Natural Analogue Review Group (NARG) |
report recommended that natural analogues be process-oriented and “should address the issues
resulting from the perturbation of a natural system (the geologic site) by the introduction of a
technological system (the repository)” (DOE 1995 [124789], p. 2). The NARG was explicit in
stating that “one should clearly discriminate such studies from those which, following the
classical approach of earth sciences, are based on the comparative study of geological sites or
situations. In particular, all investigations normally part of site characterization, even when
considering comparisons with similar remote sites, such as (paleo)hydrology, etc., should not be
considered as natural analogue studies” (DOE 1995 [124789], p. 2). The YMP has abandoned
that approach and now defines analogues in a more all-encompassing sense in order to avoid the
narrower definition.

1.6 SCOPE AND ORGANIZATION OF REPORT

This report considers a broad range of analogues that encompass both the engineered barriers and
natural system components of a geological repository at Yucca Mountain. In each section, the
conceptual basis for the process model is provided as a framework for discussion of relevant
analogue studies and examples. Next, examples of analogue studies relevant to the operative
processes in the conceptual models are presented. This is followed by an assessment of the
applicability of the information or conclusions derived from the analogue. The current repository
design approach (Section 2) and configuration of engineered barriers (Section 5) are provided as
the basis against which to identify relevant analogues for those systems. Section 3 presents
analogues related to drift stability. Section 4 provides qualitative corroboration of waste form
degradation processes. Section 6 presents examples of analogues for waste package corrosion
processes. Section 7 addresses analogues for engineered barrier components and processes.
Section 8 illustrates seepage into underground openings at sites with varying degrees of analogy.
Section 9 addresses unsaturated zone (UZ) flow processes, but is primarily concerned with Part I
of a modeling study using INEEL data. Part I of that study describes a flow model that was
calibrated using INEEL data and YMP modeling methods. The calibration parameter values
were then used in Part II of the study, which is described in Section 10 in a model of
radionuclide transport at INEEL. Section 10 also includes results to date of the Pefia Blanca field
study and literature examples of analogues related to UZ transport. Section 11 presents analogues
related to coupled processes, includes an extensive literature search for geothermal analogues,
and summarizes experimental work on drillcore from Yellowstone National Park. In addition,
Section 11 presents the results of a field and modeling study for the Paiute Ridge coupled
processes analogue site and a literature study of thermal-hydrologic-mechanical (THM)
processes. Section 12 presents an analysis of uranium mill tailing data relevant to saturated zone
(SZ) transport and includes literature examples from selected sites. Section 13 uses parameters
measured after the Chernobyl nuclear accident to arrive at Biosphere Dose Conversion Factors
(BDCFs) that can be compared to those applied in the Yucca Mountain Biosphere Process
Model. Section 14 provides examples of the ways in which analogues have been used to support
conceptual models for volcanism and seismic hazard assessments and process models. Finally,
Section 15 discusses how the analogue information is applied, both for illustrative purposes and
in performance assessments. The ways in which other countries have used analogues in
~ performance assessment are summarized. The specific needs for analogue information requested
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by YMP performance assessment are listed, and each of the analogues covered in the report is
mapped to its use in either conceptual model development, provision of data, or model
validation. In a few cases, topics are identified that could potentially increase confidence with the
use of natural analogues.

1.7 QUALITY ASSURANCE

This report provides corroborating information for the modeling of natural and engineered
barrier performance at Yucca Mountain. This report was developed in accordance with AP-
3.11Q, Technical Reports. Other applicable DOE Administrative Procedures (APs) and YMP-
LBNL Quality Implementing Procedures (QIPs) are identified in the Technical Work Plan
(TWP) Natural Analogue Studies for License Application (BSC 2001 [157535]). The Activity
Evaluation in the TWP (BSC 2001 [157535], Attachment I) graded the natural analogue work as
being non-Q and not subject to control under the DOE Office of Civilian Radioactive Waste
Management (OCRWM) Quality Assurance Requirements and Description (QARD) (DOE 2000
[149540]). All procedures followed were current revisions at the time of implementation.

The data collected under this study is corroborative and will not be used directly by Performance
Assessment (PA) for licensing. This report will be used to support PA in a confirmatory manner
only. The TWP stipulates that all data generated by this work will be unqualified. However, data
that have been collected have been submitted to the YMP Technical Data Management System
(TDMS) in accordance with AP-SII1.3Q, Submittal and Incorporation of Data to the Technical
Data Management System. The TWP also exempts the natural analogue work from following
AP-SL1Q, Software Management. Procedures that were followed during the course of the work,
including AP-SIII.1Q, Scientific Notebooks, and AP-12.1Q, Control of Measuring and Test
Equipment and Calibration Standards are listed on the TWP. Scientific notebooks are used to
provide traceability to sample collection, data analysis, calculations, and modeling studies.

Input for this report consisted of a combination of existing information from natural analogue
sites reported in the literature and data collected for the YMP. Literature data not developed by
the YMP are available for review through the Technical Information Center (TIC); data collected
by project personnel are available in TDMS; scientific notebooks (with relevant page numbers)
used in preparation of this report are listed in Table 1-2 and are available from the Records
Information System (RIS). Software referenced in this report is listed in Table 1-3. More detailed
discussion of software usage is provided in relevant scientific notebooks. Finally, this document
was developed to meet the deliverable criteria listed in Section 5 of the TWP (BSC 2001
[157535]).
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Table 1-1. KTI Agreements Addressed in This Report
Agreement Text of Agreement Section of
Number This Report

KIA0204 Document that the ASHPLUME model, as used in the DOE performance 14.3
assessment, has been compared with an analogue igneous system. (Eruptive
AC-2). DOE agreed and will deliver calculation CAL-WIS-MD-000011 that will
document a comparison of the ASHPLUME code results to observed data from
the 1995 Cerro Negro eruption. This will be available to the NRC in January 2001.

DOE will consider Cerro Negro as an analogue and document that in Eruptive
Processes AMR (ANL-MGR-GS-000002). This will be available to the NRC in
FY2002 (Eruptive AC-2).

Kuz0407 ' Provide documentation of the results obtained from the Natural Analogues 3.2-34,6.2,
modeling study. The study was to apply conceptual models and numerical 8.2-84,
approaches developed from Yucca Mountain to natural analogue sites with 10.3-10.5,
observations of seepage into drifts, drift stability, radionuclide transport, 11.2-11.5

geothermal effects, and preservation of artifacts. DOE will provide documentation
of the results obtained from the Natural Analogues modeling study. The study
was to apply conceptual models and numerical approaches developed from
Yucca Mountain to natural analogue sites with observations of seepage into drifts,
drift stability, radionuclide transport, geothermal effects, and preservation of
artifacts. This will be documented in the Natural Analogues for the Unsaturated
Zone AMR (ANL-NBS-HS-000007) expected to be available to NRC FY 2002.

'The Natural Analogue Synthesis Report replaces the AMR in the provision of documentation stated in KUZ 0407
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Table 1-2. Scientific Notebooks

LBNL Scientific Notebook 1D YMP M&O Scientific Responsible Page Numbers Citation
Notebook ID Individual
YMP-LBNL-AMS-NA-1 SN-LBNL-SCI-108-V1 | Simmons, A. 83-87, 124-127, Simmons 2002
139-144 [157544]
YMP-LBNL-AMS-NA-2 SN-LBNL-SCI-108-V2 | Simmons, A. 6-23 Simmons 2002
[157578)
YMP-LBNL-AMS-NA-AU-2 | SN-LBNL-SCI-186-V1 | Unger, A. 55-63 Simmons 2002
[157578)
YMP-LBNL-DSM-ELS PD-2 | SN-LBNL-SCI-190-V2 | Dobson, P. 79-80 Simmons 2002
[157578]
YMP-LBNL-AMS-NA PD-1B | SN-LBNL-SCI-185-V1 | Dobson, P. 7-1 Simmons 2002
[157578]
YMP-LBNL-AMS-NA PD- SN-LBNL-SCI-185-V1 | Dobson, P. Roll 17 Simmons 2002
photos Images 2 and 4 [1567578]
N/A SN-LANL-SCI-237-V1 | Murreli, M. 16 Simmons 2002
[157578]
N/A SN-LANL-SCI-215-V1 | Lichtner, P. 6-32, 56-59, 63, Simmons 2002
69-76, 89-94, [157578]
100-104, 107, -
110-112, 117-118,
128, 130-131
N/A SN-LANL-SCi-234-V1 | Lichtner, P. 16, 20, 22-24, 26-33, | Simmons 2002
61-68, 75-76, 83, [157578)
88-90
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Table 1-3. Software Codes Referenced in Text

Software Name Version Number Software Tracking Software Reference by
Number Section
ASHPLUME V 14LV 10022-1.4LV-00 14.3
ASHPLUME V20 10022-2.0-00 14.3
CXTFIT Va1 N/A 2 10.3.2.1,11.4.71
DRKBA V33 10071-3.3-00 14.4
EQ3/6 V7.2b UCRL-MA-110662 11.2.12.1,11.3.5
FEHM 2.0 10031-2.00-00 10.3.1, 10.3.6.1,
10.3.6.3, 10.36.5
FLOTRAN 1.0 N/A 10.3.1, 10.3.6.1,
10.3.6.3, 10.3.6 4,
11.4.7,11.4.71,
11.4.7.2,
iTOUGH2' V4.0 N/A 9.3.3,9.3.5,9.36,9.37,
9.5
Mathematica Vaai N/A 10.3.6.4
TOUGH2 Vi4d 10007-1.4-01 11.3.5
TOUGHREACT v22 10154-2.2-00 11.3.5
TOUGHREACT 'v23 10396-2.3-00 11.3.5
UDEC V20 B00000000-01717- 14.4
1200-30004

NOTE: 'iTOUGH2 with EOS9 and EOS7r modules

2N/A signifies that the code is unqualified and it is currently not tracked by the Software

Configuration Management System.
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2. REPOSITORY DESIGN SELECTION FOR SITE RECOMMENDATION
AND RELATION TO APPLICABLE ANALOGUES

2.1 INTRODUCTION

Studies of natural and anthropogenic systems can improve understanding and confidence in the
variables affecting the evaluation and operation of a selected repository design. The selection of
appropriate analogues to build confidence in repository design parameters should focus on the
variables affecting operational parameters rather than on a specific design for a potential Yucca
Mountain repository. The current design approach is flexible in that a wide range of thermal
operating modes is being examined. The flexible design approach is presented in Section 2.2.
The range of potential thermal operating modes is described on the basis of three evaluated
scenarios in Section 2.3, while Section 2.4 presents design methods by which the thermal goals
can be achieved. Section 2.5 provides a basis for evaluating analogues to repository materials
and processes that are discussed in subsequent chapters.

2.2 FLEXIBLITY IN DESIGN

Refining the design and operating mode of the potential monitored geologic repository at Yucca
Mountain has been an ongoing process since inception of the YMP. This iterative design process
has been focused on improving the understanding of how design features contribute to the
performance of a potential repository and to the uncertainty in that performance.

A primary design aspect has been the thermal load that will be generated by the repository.
Previous design concepts have considered higher-temperature operating modes, in which the
rock surrounding emplacement drifts exceeds the boiling point of water. More recently, to
maintain flexibility in design, the design process has evolved to examine the effects on the
repository over a wider range of thermal conditions. A flexible approach to design was
introduced in the Yucca Mountain Science and Engineering Report (S&ER) (DOE 2001
[153849], Section 2.1.3). The design has flexible operating modes that can be adapted to
accommodate a waste stream with potentially evolving thermal characteristics.

2.3 OBJECTIVES OF THERMAL OPERATING MODES

The current design concepts range from a lower-temperature operating mode to a higher-
temperature operating mode. For the lower-temperature mode, the objective is to keep the waste
package surface temperature below 85°C (DOE 2001 [153849], Section 2.1.2.3). In the higher-
temperature mode, the wall rock of the drift is above boiling temperature but the temperature is
controlled to prevent boiling fronts from coalescing in the rock pillars between the emplacement
drifts. Strategies that have been considered with regard to selecting the operating mode of the
repository are presented below.

2.3.1  Manage Boiling Fronts within the Rock Pillars

The higher end of the thermal operating mode, presented in the Supplemental Science and
Performance Analyses (SSPA) (BSC 2001 [155950], Table 2-1), assumes an average waste
package maximum temperature of ~160°C. This mode preserves the capability of the rock mass

TDR-NBS-GS-000027 REV 00 ICN 01 2-1 April 2002 |



Natural Analogue Synthesis Report

to drain percolation flux through the repository horizon by preventing the boiling fronts from
coalescing in the rock pillars between the emplacement drifts. In this mode, the close spacing of
waste packages with thermally blended spent fuel inventories achieves a relatively uniform
distribution of rock temperatures along the drift, limiting potentially complex
thermal-mechanical effects resulting from a varying thermal gradient along the drift axis. This
operating mode would also meet a design requirement established to maintain the integrity of the
waste package cladding by not exceeding a temperature of 350°C, the temperature at which the
cladding loses its integrity.

2.3.2  Maintain Drift-Wall Temperatures Below Boiling

One lower-temperature objective is to keep all the rock in the repository below the boiling point
of water to reduce uncertainties associated with coupled thermal-hydrologic-chemical-
mechanical processes driven by the boiling of water (BSC 2001 [155950], Section 2.3.2). In the
higher-temperature operating mode described in the S&ER, the rock temperatures within the first
several meters outside the emplacement drifts exceed the boiling point of water for about a
thousand years.

2.3.3  Reduce Uncertainty in Corrosion Rates

The lower-temperature end of the range of thermal operating modes was defined by considering
the potential for reducing uncertainty in the rate of localized corrosion of Alloy 22 waste
package material. At temperatures below about 85°C or relative humidity (RH) below 50
percent, the susceptibility of Alloy 22 to crevice corrosion is very low (DOE 2001 [153849],
Section 2.1.5, Figure 2-a). Operating the repository so that the temperature or relative humidity is
below this window of crevice corrosion susceptibility may increase confidence that corrosion
will not significantly reduce waste package service life.

2.4 MANAGING THERMAL OPERATING MODES

The temperature and relative humidity under which a repository would be operated for any
specified underground layout can be managed either singularly or through various combinations
of several operational parameters (DOE 2001 [153849], Section 2.1.4) such as by:

e Varying the thermal load resulting from the repository by managing the thermal output
of the waste packages

e Managing drift ventilation prior to repository closure
e Varying the distance between waste packages in emplacement drifts.

Figure 2-1 illustrates the variables affecting the thermal performance of the repository, from
waste forms to emplacement drifts.

2.5 APPLICATION TO NATURAL ANALOGUES

Because of the flexible design approach, analogues must be considered in terms of repository
design variables rather than attempting to match a specific design. The important variables are
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temperature of drift walls, presence or absence of a boiling front, dimensions and spacing of
. drifts, absence of backfill, and ventilation. These variables affect drift stability (addressed in
Section 3), waste package and drip shield corrosion (discussed in Sections 5 and 6, respectively),
processes operative within the engineered barrier system (addressed in Section 7), and thermally
coupled processes affecting the host rock at the drift and mountain scales (covered in

Section 11).
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Figure 2-1. Variables Affecting the Thermal Performance of the Repository
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3. REPOSITORY DRIFT STABILITY ANALOGUES
3.1 INTRODUCTION

Section 2 provided background information on the current flexible design for a potential
repository at Yucca Mountain against which to discuss analogues for drift stability. The proposed
emplacement drift diameter is 5.5 m (18 ft) (DOE 2001 [153849], Section 2.3.1.1). The ability of
underground openings to remain open and stable depends on a number of variables, including:
(1) rock strength; (2) the size, shape, and orientation of the opening; (3) orientation, length, and
frequency of fracturing; (4) effectiveness of ground support, and (5) loading conditions. There
are no exact analogues to the openings that would be created for a potential repository at Yucca
Mountain, but numerous examples demonstrate that both natural and man-made underground
openings can exist for thousands of years in a wide variety of geologic settings, even with
minimal or no engineering. Analogue information is available for natural underground openings
(Section 3.2) and man-made excavations (Section 3.3). An analogue demonstrating thermal
effects on underground openings is presented in Section 3.4. Effects of ground shaking on
underground openings are mentioned in Section 3.4 and discussed in more detail in Section 14.
Information found in Section 3.2, 3.3, and 3.4 may help to support arguments associated with
Key Technical Issue (KTI) KUZ0407 listed in Table 1-1.

3.2 NATURAL UNDERGROUND OPENINGS

Caves represent examples of natural underground openings. They are abundant, and in many
cases, it can be demonstrated that they have remained open for very long spans of time. The
oldest documented examples noted in this study are from the limestone formations of the
Guadalupe Mountains in New Mexico. Alunite is a mineral that forms on the floor of caves.
Undisturbed, uncovered alunite collected from the cave floors has been dated at 4.0-3.9 million
years (m.y.) for the Big Room at Carlsbad Caverns and at 6.0 to 5.7 m.y. for the upper level of
the nearby Lechuguilla Cave. Alunite from other nearby caves yields ages as old as 11.3 m.y.
(Polyak et al. 1998 [156159], p. 1919). Sections of the cave floors have blocks that appear to
have fallen from the ceiling; however, none of the dated caves has been closed by rockfall,
demonstrating the stability of most of these openings over millions of years. Because these
settings are common, they demonstrate stability for most of the openings for millions of years.
Many of these openings are as large or larger than those proposed for Yucca Mountain (Figure
3-1). '

The San Antonio Mountain Cave in northern New Mexico is an example of a different geologic
setting in which an opening has remained open over a long period of time. This cave is a lava
tube in basalt from 3.4-3.9 million years ago (Ma) (Rogers et al. 2000 [154320], pp. 89-93). The
cave is more than 170 m long and generally several meters wide. In some places, the ceiling is
over 12 m high. The large size of the openings combined with abundant cooling fractures has
resulted in fallen blocks (generally less than % m in length and width) that cover about 30% of
the cave’s floor. Several spots preserve a long record (up to 1 m.y.) of sedimentation, more than
400 cm thick, with no collapse (Rogers et al. 2000 [154320], Figure 5). Davis (1990 [144461], p.
338) notes that similar cave sediments in Europe date back 1.5 Ma, which suggests that long-
term stability of caves is a common feature.

TDR-NBS-GS-000027 REV 00 ICN 02 3-1 May 2002



Natural Analogue Synthesis Report

Most lava tubes are a few thousand to a few hundred thousand years in age. They are commonly

‘ ellipsoidal to circular in cross section and several meters in diameter. Some of the most extensive
lava tubes are in the Undara region of Australia, where 190,000-year-old tubes reach 100 km in
length (Undara Experience 2001 [157515]). Figure 3-2a shows the interior of a lava tube in the
Undara region (with a person included in the photo for scale). Lava tubes are also common in
Hawaii (Figure 3-2b) and in the Cascade Range of California, Oregon, and Washington, in lava
that is modern to a few thousand years in age. Most lava tubes exhibit areas of collapse where
the roof is thin, but large sections of open tunnel persist for long periods of time.

The maximum length of time that caves have stood open is usually not known, but the age dates
of datable biologic or archeologic materials found in many caves indicate that the caves have
remained open for extended periods of habitation without collapse. Some packrat middens found
in caves are thousands to tens of thousands of years old, and Davis (1990 [144461], p. 341)
reports that over 1,000 middens have been studied in caverns and rock shelters of the western
United States. Stuckless (2000 [151957], p. 4-6) reports on several caves in limestone that
contain paintings that have been dated at 11,000 to 32,000 years old.

Kebara Cave in Mt. Carmel, Israel, is a very large opening (26 m long and 20 m wide, with a |

ceiling up to 18 m high), and sediments accumulated on the floor of the cave yield ages as old as

50,000 years (Bar-Yosef et al. 1996 [157419], p. 305). Although the main portion of the cave

shows no sign of collapse, a terrace in front of the cave entrance was formed by collapse

sometime after 30,000 years ago (Bar-Yosef et al. 1996 [157419], p. 298). However, even this

collapsed section must have stood open for more than 20,000 years, because this section was the
. entrance from before 50,000 until 30,000 years ago.

3.3 ANTHROPOGENIC OPENINGS

Anthropogenic, or man-made, underground openings do not provide as long a history as the
natural ones, but they may provide a closer analogy to a mined geologic repository. Here too,
there are abundant examples that exhibit considerable stability for hundreds to thousands of
years even with minimal engineering. The oldest examples are the Neolithic flint mines of
northern Europe and England. These were mined into chalk deposits in 3,000 to 4,000 B.C. At |
one site in England, shafts that are 6 to 14 m deep access galleries that are 4 to 24 m in length
and are still open today (Crawford 1979 [157420], pp. 8-32).

Around 1,500 B.C., Egyptians began excavating tombs on the west bank of the Nile River, |
across from Luxor. Over 100 tombs were excavated in bedded and jointed limestone (Figure 3-
3). The tombs were generally a few meters in length and width and about 2 m in height. Many |
have pillars that were left for support in the larger rooms. Most of the tombs have incurred some
water damage to plaster and paintings on the walls and ceilings, but none seems to have suffered
collapse (Simmons 2002 [157578], SN-LBNL-SCI-108-V2, p. 7).

Mining of metallic ores has produced subterranean openings in a variety of rock types and often
in intensely altered or fractured rock. Unfortunately, many of the oldest examples have been
mined continuously or reopened in more modern times to mine remaining lower-grade ore. The
Laurion mines, about 40 km south of Athens, Greece (Figure 3-4), were first mined about 2,000
' to 1,500 B.C., but were mined most actively from 600 to 300 B.C. (Shepherd 1993 [157425], p.
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75). These silver and lead mines are in a gently dipping sequence of mica schists and marble,
with sulfides occurring along the contacts. Shafts 1.25-1.4 m by 1.5-1.9 m were sunk up to 111
m deep (Shepherd 1993 [157425], p. 17). Underground workings were 140 km in length; tunnels
averaged 1 m in width and 1.75 m in height (Shepherd 1993 [157425], pp. 17-18). Ore zones
were mined out by underhand stoping, which left large cavities a couple of meters high and a few
meters in diameter. Pillars of inferior ore-grade rock supported these cavities. Removal of rock
from these pillars was punishable by death (Shepherd 1993 [157425], p. 25).

Bronze-age mining of metal also occurred at the Great Orme Copper Mine in Wales. Charcoal
recovered from the early workings dates at 1,000 to 2,000 B.C. In 1849, miners broke into a
cavern nearly 40 m long, which contained stone hammers, most likely from the Bronze Age. The
cavern, mined into limestone, had stood open for nearly 4,000 years (Llandudno Museum 1998
[157526]).

Underground mining was common during the Roman Empire, and the size and state of
preservation of the mines not destroyed by subsequent mining are fairly similar. Shepherd (1993
[157425]) and Davies (1935 [157421]) present locations and descriptions for most of these
mines. In addition to mining for metals, the Romans created large tunnels to transport water. For
instance, the aqueduct at Tresmines, Portugal, is 60 m wide, 80 m high and 480 m long; at Corta
das Coras, the tunnel is 100 m wide, 100 m high, and 350 m long (Shepherd 1993 [157425], p.
17).

Buddhist monks carved temples into caves in the fractured Deccan basalts of west-central India,
from approximately the second century B.C. until the tenth century A.D., with most excavated in
the late fifth or early sixth century A.D. (Behl 1998 [156213], pp. 27, 39). There are 31 caves at
Ajanta, India, carved along a 550 m long, horseshoe-shaped gorge of the Waghora River. Each
temple originally had steps carved into the rock leading up to it, but only Cave #16 still has a
vestige of steps. The monsoonal climate has destroyed the exterior stone structures exposed to
the elements, but subterranean openings have been well preserved in spite of the climatic effects.
Similar Buddhist caves, from the sixth through the tenth centuries A.D., are preserved at Ellora
and from the ninth century A.D. (Jain caves) at Sittanavasal, India (Behl 1998 [156213], p. 39).

The cross-sectional dimensions of most of the temples at Ajanta are larger than those proposed
for a mined geologic repository. For example, Cave #10 is 30.5 m X 12.2 m. Cave #2 has a
verandah of 14.10 m x 2.36 m, a main hall of 14.73 m X 14.5 m, and a shrine of 4.27 m X
3.35 m. Cave #16 has a verandah of 19.8 m X 3.25 m and a main hall of 22.25 m on a side with a
height of 4.6 m. In spite of these large sizes, there is no reported collapse. As in the case of the
Egyptian tombs, most of the Ajanta paintings appear to have suffered some water damage and
vandalism (Behl 1998 [156213], pp. 234-236).

During the second through eleventh centuries A.D., the Christians of Cappadocia, Turkey,
excavated underground cities and churches. One of these cities, Derinkuyu, covered
approximately 4 km® and had an estimated 15,000 to 20,000 inhabitants (Toprak et al. 1994
[157429], p. 54) during much of the first millennium A.D. As of 1994, eight levels of ancient
habitation had been discovered. Access to the underground cities was by way of narrow
passageways that could be closed by rolling a 1.5 m diameter millstone across the opening
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(Figure 3-5). The excavated rooms were genera]ly several meters across and more than 10 m
long.

. The geology of Cappadocia (Toprak et al. 1994 [157429], pp. 8-1 i) is similar to that of southern
Nevada (Sawyer et al. 1994 [100075]). In both regions, the late Tertiary section is composed of a
thick sequence of silicic volcanic rocks. At Yucca Mountain, the host rock for the potential

repository is a densely welded, quartz latite ash-flow tuff that formed about 11.6 Ma, whereas the

underground cities of Cappadocia are situated in a partially welded, rhyolite ash-flow tuff that
formed about 4 to 9 Ma. The difference in welding at Yucca Mountain and the underground
cities of Cappadocia results in markedly different fracture density and engineering properties.
Fracture density, which is a major variable contributing to underground collapse, is much lower
in the underground cities. Ground support, which would be carefully engineered at Yucca
Mountain, was never used in the underground cities. Thus, the fact that there has been no
collapse in the underground cities of Cappadocia during the past 1,500 to 1,800 years suggests
that excavations in tuff should be stable for long periods of time if undisturbed. Stability of
unsupported openings would be favored in tuffs of a low degree of welding and fracturing.

Churches were excavated into the tuff north of the underground cities at Goreme, in Cappadocia,
during the ninth to thirteenth centuries A.D. (Toprak et al. 1994 [157429], p. 53). All but one of
these show no evidence of collapse. The exception is a collapse of a cliff face that exposes part
of the inside of one church. The interior portions of the church are still in excellent condition,
. and their painted walls and ceilings within are well preserved except for spallatlon and vandalism
(Stuckless 2000 [151957], p. 22).

Some of the underground openings excavated into the tuffs of Cappadocia are still used as
dwellings. There are at least two other places where underground excavations are still used as
dwellings. In Tunisia, 20 to 40 km south of the city of Gabes, ten underground villages, some of
which date back nine centuries, are excavated in limestone (Golany 1983 [157422], pp. 5-6).
The limestone is composed of poorly indurated layers approximately 2 m thick, which are easily
mined out, along with better indurated layers of similar thickness. Room sizes are typically 2 to
2.5 m on a side, with flat ceilings that may have a supporting column in the center. Similarly, in
northern China, thick deposits of slightly indurated loess exist, which could be easily excavated.
However, its internal structure is such that loess can form vertical cliffs as much as 30 m in
height. The underground dwellings accommodate more than 10 million people, who farm the
land above their houses (Golany 1983 [157422], p. 13).

Although all the examples given so far either lack ground support or utilize only unmined pillars,
examples do exist of wooden ground support. Around the beginning of the second century A.D.,
the Roman Emperor Hadrian mandated the use of wooden supports in all mines (Shepherd 1993
[157425], p. 25). Shepherd (1993 [157425], p. 26) provides a discussion of some examples, but
does not comment on the stability of openings that were shored up. Tombs in China provide a
different kind of example. Sixteen emperors from the Ming Dynasty (1368 to 1644 A.D.) were
buried in tombs excavated in rock near Beijing. The earliest of the tombs has 32 sandalwood
pillars 1.17 m in diameter; all are still intact and sturdy (Golany 1989 [157423], pp. 21-22).
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3.4 UNDERGROUND OPENINGS AFFECTED BY TEMPERATURE

The foregoing descriptions show that both natural and manmade underground openings maintain
stability well in an undisturbed setting. In fact, many of the examples given, as well as several
mines not discussed, have probably been subjected to significant seismic shaking. Further
discussion of seismic effects on underground openings is provided in Section 14.

The stability of underground openings can also be affected by temperature. An example of
thermal stresses causing rockfall around rock bolts in a heated area occurred at Linwood Mining
Company’s limestone excavations (Simmons 2002 [157578], SN-LBNL-SCI-108-V2, pp. 7, 8).
Linwood has excavated limestone adjacent to the Mississippi River downstream from Moline,
Illinois, since World War I for processing in a kiln. The mine started as a surface quarrying
operation, but as excavation progressed, the mine was converted to an underground room and
pillar operation. The elevation of the underground workings is lower than the Mississippi River.

The company started venting the kiln exhaust underground in 1971 as part of a solution for
controlling dust emissions from the kiln (Simmons 2002 [157578], SN-LBNL-SCI-108-V2, pp.
7, 8). To do this, a 96-acre portion of the mine was nominally mined with 30 ft x 30 ft pillars 21
ft high. This portion was walled off from the active workings. Exhaust from the kiln is vented to
these workings at 400°F (204°C), leaving the dust behind for later collection.

The mining company adds bolts and mesh when a karstic depression is encountered, but
otherwise the mine is essentially unsupported. Perhaps for this reason, steel-bar rock bolts were
placed near the entry of the exhaust. After some period of venting, the rock near the exhaust vent
broke out, leaving the bolts that had been emplaced in the rock, with the bottom 5 feet or so of
the bolts surrounded by air. It was suggested that the surrounding rock had probably fallen out
because heat was transferred up the rock bolt faster than it was transferred through the rock,
which resulted in a thermal stress that caused failure for a rock with an unconfined compressive
strength of 18,000 psi (~125 MPa) (Simmons 2002 [157578], SN-LBNL-SCI-108-V2, pp. 7, 8).

3.5 SUMMARY

In Section 3, numerous examples are provided of the stability of natural and man-made
underground openings for millennia or longer under undisturbed conditions. However, an
inherent bias is reflected in the studies because of the difficulty of determining the relative
percent of openings that remain versus those that have collapsed. It is more difficult to evaluate
the cause of collapse of such openings, whether by human interference or natural causes. The
ability of underground openings to remain open and stable under ambient conditions depends on
a number of variables, including: (1) rock strength; (2) the size, shape, and orientation of the
opening; (3) orientation, length, and frequency of fracturing; and (4) effectiveness of ground
support. Radiometric dating of cave floor minerals at Carlsbad Caverns and Lechuguilla Cave
indicates that natural openings larger than those proposed for repository drifts at Yucca
Mountain have remained open for millions of years. Collapse of the roof of an opening tends to
occur where the fracture density is high and the overburden is thin, as is the case with some lava
tubes. Factors that contribute to the size of a block falling are fracture spacing, which in turn
depends on rock type and texture, and the size and shape of the opening.
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The oldest examples of stable man-made openings are Neolithic flint mines dating from 4,000 to
. 3,000 B.C. However, numerous Roman mines and some aqueducts remain intact that tended to |
have been constructed of a similar size and now exhibit the same state of preservation. These and
other examples demonstrate that both natural and man-made underground openings can exist for
thousands of years in a wide variety of geologic settings, even with minimal or no engineering.
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NOTE: Areas such as this have no obvious roof blocks on the floor of the
cavern or holes in the ceiling from which blocks might have fallen.

Source:  Simmons 2002 [157578], SN-LBNL-SCI-108-V2, p. 6.

Figure 3-1. Photograph of Fairyland in Carlsbad Caverns, New Mexico

(a)

Source: (a) Undara Experience 2001 [157515] and
(b) USGS 2000 [157517)).

Figure 3-2. Photographs of (a) Lava Tube in Undara, Australia, and (b) Nahuku Lava Tube in Hawaii
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